

Évaluation à la volée de la diagnosticabilité des systèmes à événements discrets temporisés

Baisi LIU, Mohamed GHAZEL, Armand TOGUYÉNI

École Centrale de Lille (EC-Lille)

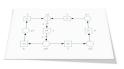
Laboratoire d'Automatique, Génie Informatique et Signal (LAGIS)
Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)

November 15, 2013

Outline

- Introduction
- 2 Labeled time Petri net and its observability
- 3 Diagnosability of labeled time Petri nets
- Summary

- Introduction
 - Discrete event systems
 - Fault diagnosis of discrete event systems
 - Objectives



Abstraction of discrete event systems

$\mathsf{Real}\ \mathsf{systems} \to \mathsf{discrete}\ \mathsf{event}\ \mathsf{systems}\ (\mathsf{DES})$

Abstraction of discrete event systems

Real systems \rightarrow discrete event systems (DES)

Abstraction of DES [Cassandras & Lafortune, 2007]

- Untimed DES
 - System behavior is described by events of logic ordering. e.g., $s_1 = ab$, $s_2 = ab$.
- Timed DES
 - System behavior is described by events of logic ordering + occurrence dates, e.g., $s_1 = (a@1)(b@5)$, $s_2 = (a@2)(b@4)$.
- Stochastic DES
 - logic ordering + occurrence dates + occurrence probability

Fault diagnosis of DES

Partial observation

- \bullet Indication of an event by sensor reading \to observation
- \bullet Limitation of sensor installation \to partial observation

Fault diagnosis of DES

Partial observation

- Indication of an event by sensor reading → observation
- ullet Limitation of sensor installation o partial observation

Fault diagnosis [Lin, 1994; Sampath et al., 1995]

- Diagnosability
 - The ability to diagnose any fault in finite delay (K steps / Δ time units)
 - Offline analysis
- Diagnosis
 - Detection and isolation of a fault
 - Online analysis

5 / 26

Fault diagnosis of DES

Partial observation

- ullet Indication of an event by sensor reading o observation
- ullet Limitation of sensor installation o partial observation

Fault diagnosis [Lin, 1994; Sampath et al., 1995]

- Diagnosability
 - ullet The ability to diagnose any fault in finite delay (K steps / Δ time units)
 - Offline analysis
- Diagnosis
 - · Detection and isolation of a fault
 - Online analysis

From untimed to timed diagnosis

- An undiagnosable fault in untimed context may be diagnosable in timed context
- An undiagnosable fault in timed context must be undiagnosable in timed context
- Untimed context: $s_1 = s_2$, f is undiagnosable Timed context: $s_1 \neq s_2$, f is diagnosable

Relative research on diagnosability

Untimed diagnosability

 Sampath et al., 1995 automata, diagnoser automata, conditions for diagnosability

Untimed K-diagnosability

- Basile et al., 2010: 2012 Petri net, linear programming, conditions for diagnosability
- Cabasino et al., 2012 Petri net, verifier net, conditions for diagnosability

Timed Δ -diagnosability

- Tripakis et al., 2002; Cassez et al., 2012 timed automata, conditions for timed diagnosability
- Bouyer et al., 2005 timed automata, timed diagnosability

Problems

Can we analyze timed diagnosability using untimed approaches?

Problems

Can we analyze timed diagnosability using untimed approaches?

Timed diagnosability analysis of DES

• What are the conditions for diagnosability of timed DES?

Problems

Can we analyze timed diagnosability using untimed approaches?

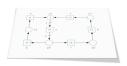
Timed diagnosability analysis of DES

• What are the conditions for diagnosability of timed DES?

Δ -diagnosability of timed DES

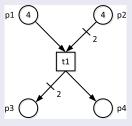
- Is a fault diagnosable under a given time delay of Δ ?
- Is there a minimum Δ to ensure diagnosability?
 - For $\Delta > \Delta_{min}$ the system is Δ -diagnosable.

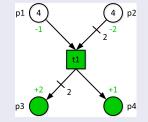
- 2 Labeled time Petri net and its observability
 - Petri net and its extensions
 - Observation of labeled time Petri net

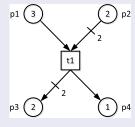


Petri net (PN) [Petri, 1962]

- Petri net = $(P, T, Pre, Post, M_0)$
 - P is the set of places;
 - T is the set of transitions:
 - Pre is the pre-incidence mapping;
 - Post is the post-incidence mapping;
 - M_0 is the initial marking.



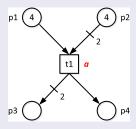


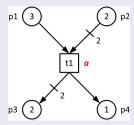


 $\bullet \ M_1 = M_0 + (Post - Pre) \cdot \vec{t_1}$

Labeled Petri net (LPN)

- Labeled Petri net = $(P, T, Pre, Post, M_0, \Sigma, \varphi)$
 - $(P, T, Pre, Post, M_0)$ is an ordinary Petri net;
 - Σ is the set of events;
 - φ is the labeling function $\Sigma \to T$.

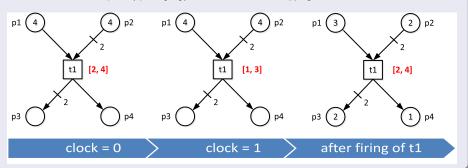




•
$$M_1 = M_0 + (Post - Pre) \cdot \vec{t_1}$$

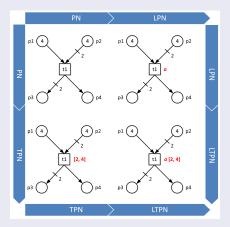
Time Petri net (TPN) [Merlin, 1974]

- Time Petri net = $(P, T, Pre, Post, M_0, SIM)$
 - $(P, T, Pre, Post, M_0)$ is an ordinary Petri net;
 - $SIM: T \to \mathbb{Q}^+ \times (\mathbb{Q}^+ \cup \{\infty\})$ is the static interval mapping.



Labeled time Petri net (LTPN)

• LTPN = $(P, T, Pre, Post, M_0, \Sigma, \varphi, SIM)$



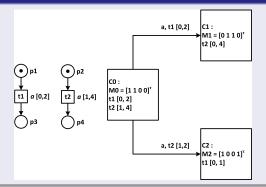
• A LTPN is a nondeterministic timed model for DES.

State class for TPN & LTPN

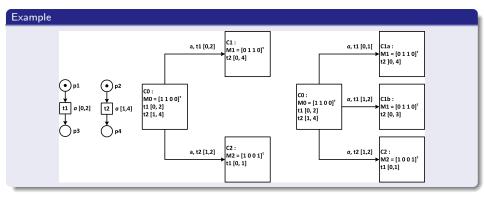
State class [Berthomieu, 1983]

- State class C = (M, D)
 - ullet M is a marking;
 - D is a firing domain;
- State class provides finite presentation for infinite state space.

Example



Overestimation in the observation for LTPN



A deterministic structure for observation of LTPN

- Original state classes (firing domains) are overestimated after splitting time intervals.
- Recomputation of state classes is necessary for further analysis.

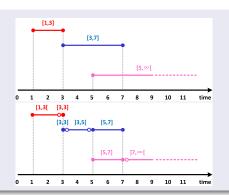
Splitting time intervals

- Untimed discrimination:
 - (e_1,i_1) and (e_2,i_2) are distinguishable if $e_1 \neq e_2$, e.g., a[2,4] and b[3,5] are distinguishable.
- Timed discrimination:
 - (e, i_1) and (e, i_2) are distinguishable if $i_1 \cap i_2 \neq \emptyset$,
 - e.g., a[2,4] and a[7,9] are distinguishable.

Splitting time intervals

- Untimed discrimination:
 - (e_1,i_1) and (e_2,i_2) are distinguishable if $e_1 \neq e_2$, e.g., a[2,4] and b[3,5] are distinguishable.
- Timed discrimination:

 (e, i_1) and (e, i_2) are distinguishable if $i_1 \cap i_2 \neq \emptyset$, e.g., a[2, 4] and a[7, 9] are distinguishable.



 $e[1,3]; e[3,7]; e[5,\infty[$

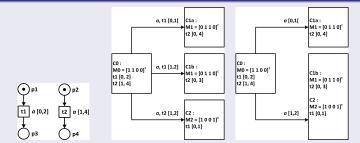
 $e[1,3[;e[3,3];e]3,5[;e[5,7];e]7,\infty[$

Observer for LTPN

Transition between state class sets

- $X_1 \xrightarrow{(e,i)} X_2$
 - X_1 : a source set of state classes;
 - (e, i): observable event e with an interval i;
 - X_2 : a target set of state classes.
- An observer for LTPN deduce the current state by an event and its occurrence date.

Example



 Splitting time interval transforms a timed nondeterministic structure into a untimed deterministic one.

- 3 Diagnosability of labeled time Petri nets
 - Basic notations
 - Conditions for diagnosability
 - Online diagnosis

Augmented state class graph (ASC-graph)

Augmented state class (ASC)

- ASC: x = (C, y)
 - C is a state class;
 - y is a fault tag.
- x' = (C', y') is reachable from x = (C, y) upon $\sigma \in T^*$, iff
 - $C \xrightarrow{\sigma} C'$;

$$y' = \begin{cases} F & \text{if } (y = F) \lor (\exists \ k, \sigma^k \in T_f) \text{ where } T_f \text{ is the set of faulty transitions} \\ N & \text{otherwise} \end{cases}$$

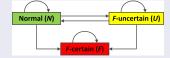
ASC-graph

- ASC-graph carries the information of both reachability and fault propagation.
- The graph structure helps to check some specific cycles (indeterminate cycles).

ASC-set graph (ASG)

ASC-set

- ASC-set is a set of ASCs reached right after an observable event.
- An ASC-set is
 - normal, if \forall $(C, y) \in g, y = N$ (N denotes normal);
 - F-certain, if \forall $(C, y) \in g, y = F$ (F denotes fault);
 - F-uncertain, otherwise.
- The transition of ASC-set $(C,y) \rightarrow (C',y')$:
 - \bullet $C \rightarrow C'$ follows the rules for classical state classes.
 - $\bullet \ y \to y'$ follows the rules for (permanent) fault propagation.



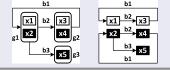
ASC-set graph (ASG)

- An ASG is a deterministic structure for diagnosability analysis.
- An ASG present the reachability and fault propagation of LTPN in untimed formation.

Conditions for diagnosability

Condition 1: no indeterminate cycle

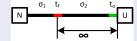
- No indeterminate cycle is the condition for diagnosability for untimed DES. [Sampath et al., 1995]
- There exists "indeterminate cycle" \Rightarrow the fault is undiagnosable.



Condition 2: infinite sequence duration

• The sequence duration between a fault and an F-uncertain ASC is infinite ⇒ the fault is undiagnosable.

 $\sigma_1 \in T_n^*, t_f \in T_f, \sigma_2 \in T^*, t_o \in T_o, (max(SD(\sigma_2 t_o)) = \infty) \Rightarrow t_f$ is not diagnosable



• This condition is under the condition of diagnosability in timed context.

Conditions for diagnosability

Condition 3: F-uncertain subset of ASC

- Deadlock subset of an F-uncertain ASC is F-uncertain ⇒ the fault is undiagnosable.
- This condition is under the condition of unlive timed DES.

Condition for diagnosability

• !Condition $1 \land$!Condition $2 \land$!Condition $3 \Rightarrow$ the fault is diagnosable.

On the fly approach

On the fly approach

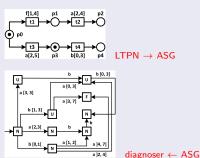
- ASC-graph and ASG are built in parallel.
 - ASC-graph is used for checking indeterminate cycles. ASG is used for analyze fault propagation.
- State space is generated as necessary.

Advantage

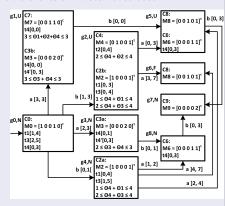
- Lower cost than state enumerative approach.
- Possible to lead the state generation by a strategy.

Online diagnosis of LTPNs

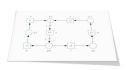
- ullet LTPN o ASG o timed diagnoser
- Timed diagnoser reacts to a sequence of observable events and occurrence date.



• Example: $(b@2)(a@4) \rightarrow$ a fault has occurred.



- Summary
 - Contributions and Current Works



Contributions

- Approach of splitting time intervals to analyze observability of LTPNs.
- Conditions for diagnosability for LTPN models.
- An on-the-fly approach to check diagnosability.

Future Works

- On-the-fly construction of ASG using heuristics.
- Diagnosability analysis using zone graph.

Thank you for your attention!

