
Quelques défis en modélisation des systèmes hybrides 1

Benoît Caillaud

Inria
Rennes, France

MSR’13
15 novembre 2013

1Collaboration avec Albert Benveniste, Timothy Bourke et Marc Pouzet.
1 / 43

Modélisation des systèmes hybrides

Programmation des systèmes discrets et modélisation de
leur environnement physique dans un même langage

Une multitude d’outils
I Simulink/Stateflow, LabVIEW, Modelica, Ptolemy, . . .

Physique = non-régularité

électronique
de puissance

mécanique
multicorps

modes
glissants

2 / 43

Modélisation des systèmes hybrides

Programmation des systèmes discrets et modélisation de
leur environnement physique dans un même langage

Focalisation sur la conception des langages pour une modélisation et
une simulation fidèle

Notre approche
I Conception d’un langage/outil de modélisation hybride sur la base

d’un langage réactif synchrone
I Recyclage de techniques de compilation issues des langages

synchrones (SCADE / Lustre)
I Clarifier les principes et la sémantique des systèmes hybrides

3 / 43

Le cabinet des monstres. . .

4 / 43

Problème de typage : mélange du continu et du discret

Unit Delay

z

1

ScopeIntegrator

1

s

Constant

1

Add

cpt

time

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

Time

I Warning with ‘Unit Delay’ but not with
‘Memory’.

I The shape of cpt depends on the steps
chosen by the solver.

I Putting another component in parallel
can change the result.

I Similar issues with Stateflow.

Integrator

1
s

54

DisplayConstant

1

Chart

t cpt
s1

{cpt := 0}

[t<=42]{cpt := cpt + 1}

5 / 43

Problème de typage : mélange du continu et du discret

Unit Delay

z

1

ScopeIntegrator

1

s

Constant

1

Add

cpt

time

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

Time

I Warning with ‘Unit Delay’ but not with
‘Memory’.

I The shape of cpt depends on the steps
chosen by the solver.

I Putting another component in parallel
can change the result.

I Similar issues with Stateflow.

Integrator

1
s

54

DisplayConstant

1

Chart

t cpt
s1

{cpt := 0}

[t<=42]{cpt := cpt + 1}

5 / 43

Causality issue: the Simulink state port

Scope

Integrator1

1

s

xo

Integrator0

1

s

xo

Gain1

−4

Gain0

−3

Constant

1

Bias

u−2.0
x

y

Scope

Integrator1

1

s

xo

Integrator0

1

s

xo

Gain1

−4

Gain0

−3

Constant

1

Bias

u−2.0
x

y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−6

−4

−2

0

2

x

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

Time

y

The output of the state port is the same as the output of the
block’s standard output port except for the following case. If
the block is reset in the current time step, the output of the
state port is the value that would have appeared at the block’s
standard output if the block had not been reset.
–Simulink Reference (2-685)

t < 2: x(t) = t, y(t) = t2

2
t = 2: x = −3 · last y = −6,

y = −4 · last x = −8

But: y = −4 · x = 24 !

6 / 43

Causality issue: the Simulink state port

Scope

Integrator1

1

s

xo

Integrator0

1

s

xo

Gain1

−4

Gain0

−3

Constant

1

Bias

u−2.0
x

y

Scope

Integrator1

1

s

xo

Integrator0

1

s

xo

Gain1

−4

Gain0

−3

Constant

1

Bias

u−2.0
x

y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−6

−4

−2

0

2

x

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

Time

y

The output of the state port is the same as the output of the
block’s standard output port except for the following case. If
the block is reset in the current time step, the output of the
state port is the value that would have appeared at the block’s
standard output if the block had not been reset.
–Simulink Reference (2-685)

t < 2: x(t) = t, y(t) = t2

2
t = 2: x = −3 · last y = −6,

y = −4 · last x = −8

But: y = −4 · x = 24 !

6 / 43

Causality issue: the Simulink state port

Scope

Integrator1

1

s

xo

Integrator0

1

s

xo

Gain1

−4

Gain0

−3

Constant

1

Bias

u−2.0
x

y

Scope

Integrator1

1

s

xo

Integrator0

1

s

xo

Gain1

−4

Gain0

−3

Constant

1

Bias

u−2.0
x

y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−6

−4

−2

0

2

x

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

Time

y
The output of the state port is the same as the output of the
block’s standard output port except for the following case. If
the block is reset in the current time step, the output of the
state port is the value that would have appeared at the block’s
standard output if the block had not been reset.
–Simulink Reference (2-685)

t < 2: x(t) = t, y(t) = t2

2
t = 2: x = −3 · last y = −6,

y = −4 · last x = −8

But: y = −4 · x = 24 !

6 / 43

Modes glissants 
ẋ = −sgn(x) + 2sgn(y)
ẏ = −2sgn(x)− sgn(y)
ż = sgn(x) + sgn(y)

(1,−3,2)

y

x0

(3,1,0)

(6,9,0)

(9,0,6)

(0,−3,6)

(−1,0,4)

(0,1/3,4)
(1/9,0,20/9)

(−3,−1,0)

(−1,3,−2)
I Spirale “carrée”
I Attracteur :

droite x = y = 0
I Zénon à t = 7.5
I Calculer z à t = 10 ?

7 / 43

Modes glissants 
ẋ = −sgn(x) + 2sgn(y)
ẏ = −2sgn(x)− sgn(y)
ż = sgn(x) + sgn(y)

(1,−3,2)

y

x0

(3,1,0)

(6,9,0)

(9,0,6)

(0,−3,6)

(−1,0,4)

(0,1/3,4)
(1/9,0,20/9)

(−3,−1,0)

(−1,3,−2)

I Spirale “carrée”
I Attracteur :

droite x = y = 0
I Zénon à t = 7.5
I Calculer z à t = 10 ?

7 / 43

Modes glissants 
ẋ = −sgn(x) + 2sgn(y)
ẏ = −2sgn(x)− sgn(y)
ż = sgn(x) + sgn(y)

(1,−3,2)

y

x0

(3,1,0)

(6,9,0)

(9,0,6)

(0,−3,6)

(−1,0,4)

(0,1/3,4)
(1/9,0,20/9)

(−3,−1,0)

(−1,3,−2)
I Spirale “carrée”
I Attracteur :

droite x = y = 0
I Zénon à t = 7.5
I Calculer z à t = 10 ?

7 / 43

DAE + commutation de modes



N i = 0
Ku = 0

u− R i = 0
C u̇− i = 0

∀i 0 ≤ iDi ⊥ uDi ≥ 0
u

i 
i ≥ 0
u ≥
ui = 0

I 2n modes
I Ordonnancement dépend

du mode
I Dymola : énumère les

modes et explose
I Modularité ⇒ DAE ⇒

Modelica

8 / 43

DAE + commutation de modes



N i = 0
Ku = 0

u− R i = 0
C u̇− i = 0

∀i 0 ≤ iDi ⊥ uDi ≥ 0
u

i 
i ≥ 0
u ≥
ui = 0

I 2n modes
I Ordonnancement dépend

du mode
I Dymola : énumère les

modes et explose
I Modularité ⇒ DAE ⇒

Modelica

8 / 43

DAE + commutation de modes



N i = 0
Ku = 0

u− R i = 0
C u̇− i = 0

∀i 0 ≤ iDi ⊥ uDi ≥ 0

u

i 
i ≥ 0
u ≥
ui = 0

I 2n modes
I Ordonnancement dépend

du mode
I Dymola : énumère les

modes et explose
I Modularité ⇒ DAE ⇒

Modelica

8 / 43

Variation d’index : exemple LDC

w

vLu C

j



0 = j ′ − u/L
0 = v ′ − j/C
0 = u + v + w
0 ≤ j
0 ≤ w
0 = jw



9 / 43

Variation d’index : exemple LDC

0 = j ′ − u/L
0 = v ′ − j/C
0 = u + v + w
0 ≤ j
0 ≤ w
0 = jw


︸ ︷︷ ︸

Hybrid DAE system


0 = j ′ − u/L
0 = v ′ − j/C
0 = u + v + w
0 = w


︸ ︷︷ ︸

mode j≥0


0 = j ′ − u/L
0 = v ′ − j/C
0 = u + v + w
0 = j


︸ ︷︷ ︸

mode w≥0
⇓ ⇓

0 = j ′ − u/L
0 = v ′ − j/C
0 = u + v
0 = w




0 = j ′ − u/L
0 = v ′
0 = u + v + w
0 = j


⇓ ⇓

j ′ = −v/L
v ′ = +j/C
u = −v
w = 0


︸ ︷︷ ︸

index 0


u = Lj ′
v ′ = 0
w = −u − v
0 = j
j ′ = 0


︸ ︷︷ ︸
index 1 (one differentiation)10 / 43

Variation d’index : exemple LDC

0 = j ′ − u/L
0 = v ′ − j/C
0 = u + v + w
0 ≤ j
0 ≤ w
0 = jw


︸ ︷︷ ︸

Hybrid DAE system


0 = j ′ − u/L
0 = v ′ − j/C
0 = u + v + w
0 = w


︸ ︷︷ ︸

mode j≥0


0 = j ′ − u/L
0 = v ′ − j/C
0 = u + v + w
0 = j


︸ ︷︷ ︸

mode w≥0

⇓ ⇓
j ′ = −v/L
v ′ = +j/C
u = −v
w = 0


︸ ︷︷ ︸

index 0


u = Lj ′
v ′ = 0
w = −u − v
0 = j
j ′ = 0


︸ ︷︷ ︸
index 1 (one differentiation)

This hybrid DAE system has two modes with guards [j≥0] and [w≥0]
I Indexes in each mode differ and causality analyses differ
⇒ Schedulings differ

10 / 43

Zélus
zelus.di.ens.fr

11 / 43

Reuse existing tools and techniques
Synchronous languages (SCADE/Lustre)

I Widely used for critical systems design and implementation
I mathematically sound semantics
I certified compilation (DO178C)

I Expressive language for both discrete controllers and mode changes
I Do not support modelling continuous dynamics!

Off-the-shelf ODEs numeric solvers
I Sundials CVODE (LLNL) among others, treated as black boxes
I Exploit existing techniques and (variable step) solvers

A conservative extension:
Any synchronous program must be compiled,

optimized, and executed as per usual

12 / 43

Type systems to separate continuous from discrete
What is a discrete step?

I Reject unreasonable parallel compositions
I Ensure by static typing that discrete changes occur on zero-crossings
I Signals are continuous during integration
I Statically detect causality loops, initialization issues

Simulation engine

D C
reaction

[reinitialize]

zero-crossing event
integrate

σ′ = dσ(t, y) upz = gσ(t, y) ẏ = fσ(t, y)
13 / 43

Combinatorial and sequential functions
Time is logical as in Lustre. A signal is a sequence of values and nothing
is said about the actual time to go from one instant to another.

let add (x,y) = x + y

let node min_max (x, y) = if x < y then x, y else y, x

let node after (n, t) = (c = n) where
rec c = 0 → pre(min(tick, n))
and tick = if t then c + 1 else c

When feed into the compiler, we get:
val add : int × int A→ int
val mix_max : α× α D→ α× α
val after : int × int D→ bool

x, y, etc. are infinite sequences of values.
14 / 43

Examples

A simple heat controller with ODEs. Using an explicit Euler dicretization,
these programs could have been written almost as is in Scade 6 or Lucid
Synchrone.
(∗ an hysteresis controller for a heater ∗)
let hybrid heater(active) = temp where
rec der temp = if active then c −. k ∗. temp else −. k ∗. temp init temp0

let hybrid hysteresis_controller(temp) = active where
rec automaton

| Idle → do active = false until (up(t_min −. temp)) then Active
| Active → do active = true until (up(temp −. t_max)) then Idle

let hybrid main() = temp where
rec active = hysteresis_controller(temp)
and temp = heater(active)

15 / 43

The Bouncing ball
let hybrid bouncing(x0,y0,x’0,y’0) = (x,y) where

der(x) = x’ init x0
and
der(x’) = 0.0 init x’0

and
der(y) = y’ init y0

and
der(y’) = −. g init y’0 reset up(−. y) → −. 0.9 ∗. last y’

Its type signature is:
float × float × float × float C→ float × float

I When −. y crosses zero, re-initialize the speed y’ with −. 0.9 ∗ last y’.
I last y’ stands for the previous value of y’.
I As y’ is immediately reset, writing last y’ is mandatory

—otherwise, y’ would instantaneously depend on itself.
16 / 43

Zero-crossings and Valued Signals

I up(e) tests the zero-crossing of expression e from strictly negative to
strictly positive.

I Performed by the solver during integration.
I If x = up(e), all handlers using x are governed by the same

zero-crossing.
I Handlers have priorities.

let hybrid f(x, y) = (v, z1, z2) where
rec v = present z1 → 1 | z2 → 2 init 0
and z1 = up(x)
and z2 = up(y)

val f : float × float C→ float × zero × zero

17 / 43

Emit a value only when a zero-crossing is detected
let hybrid f(x, y) = o where
rec o = present up(x) → 42 | up(y) → 43

val f: float C→ int signal

o is only present when either up(x) or up(y) and it carries an integer value.

Do pattern matching on valued signals
let hybrid default(x, y, x0) = o where
rec o = present x(v) → v | y(w) → w init x0

val f: int signal C→ int

returns the current value of x (when present), y (when present) and holds
the previous value otherwise.

18 / 43

Two difficulties

Ensure that continuous and discrete time signals interfere correctly?
I Discrete time should stay logical and independent of the solver’s step

size.
I Otherwise, we get the same monsters as Simulink/Stateflow have.
I Provide a type system for that.

Ensure that fix-point exist and code can be scheduled?
I Algebraic loops must be statically detected.
I Usefull for code generation purposes.
I Introduce the operator last(x) as the “left limit” of a signal.
I An a type-system to ensure that programs can be statically scheduled.

19 / 43

Mixing discrete (logical) time and continuous time
Given:

let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x

Define:
let wrong () = ()
where rec
der time = 1.0 init 0.0
and y = sum (time)

0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

7

8

9

10

time

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices

20 / 43

Mixing discrete (logical) time and continuous time
Given:

let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x

Define:
let wrong () = ()
where rec
der time = 1.0 init 0.0
and y = sum (time)

0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

7

8

9

10

time

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices

20 / 43

Mixing discrete (logical) time and continuous time
Given:

let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x

Define:
let wrong () = ()
where rec
der time = 1.0 init 0.0
and y = sum (time)

Interpretation:
I Option 1: N ⊆ R
I Option 2: depends on solver
I Option 3: infinitesimal steps
I Option 4: type and reject

0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

7

8

9

10

time

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices

20 / 43

Mixing discrete (logical) time and continuous time
Given:

let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x

Define:
let wrong () = ()
where rec
der time = 1.0 init 0.0
and y = sum (time)

Interpretation:
I Option 1: N ⊆ R
I Option 2: depends on solver
I Option 3: infinitesimal steps
I Option 4: type and reject

0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

7

8

9

10

time

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices

20 / 43

Mixing discrete (logical) time and continuous time
Given:

let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x

Define:
let wrong () = ()
where rec
der time = 1.0 init 0.0
and y = sum (time)

Interpretation:
I Option 1: N ⊆ R
I Option 2: depends on solver
I Option 3: infinitesimal steps
I Option 4: type and reject

0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

7

8

9

10

time

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices

20 / 43

Mixing discrete (logical) time and continuous time
Given:

let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x

Define:
let wrong () = ()
where rec
der time = 1.0 init 0.0
and y = sum (time)

Interpretation:
I Option 1: N ⊆ R
I Option 2: depends on solver
I Option 3: infinitesimal steps
I Option 4: type and reject

0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

7

8

9

10

time

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices

20 / 43

Mixing discrete (logical) time and continuous time
Given:

let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x

Define:
let wrong () = ()
where rec
der time = 1.0 init 0.0
and y = sum (time)

Interpretation:
I Option 1: N ⊆ R
I Option 2: depends on solver
I Option 3: infinitesimal steps
I Option 4: type and reject

X
0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

7

8

9

10

time

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices

20 / 43

Mixing discrete (logical) time and continuous time
Given:

let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x

Define:
let hybrid correct () = ()
where rec
der time = 1.0 init 0.0
and y = present up(ez) → sum (time)

init 0.0

I node:
function acting in discrete time

I hybrid:
function acting in continuous time

0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

7

8

9

10

time

ez

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices

20 / 43

Mixing discrete (logical) time and continuous time
Given:

let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x

Define:
let hybrid correct () = ()
where rec
der time = 1.0 init 0.0
and y = present up(ez) → sum (time)

init 0.0

I node:
function acting in discrete time

I hybrid:
function acting in continuous time

0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

7

8

9

10

time

ez

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices

20 / 43

Basic typing [LCTES’11]
A simple ML type system with effects.

The type language

bt ::= float | int | bool | zero
t ::= bt | t × t | β
σ ::= ∀β1, ..., βn.t k−→ t
k ::= D | C | A A

D C

Initial conditions
(+) : int× int A−→ int
if : ∀β.bool× β × β A−→ β

(=) : ∀β.β × β D−→ bool
pre(·) : ∀β.β D−→ β

· fby · : ∀β.β × β D−→ β

up(·) : float C−→ zero
· on · : zero× bool A−→ zero

21 / 43

Causality issues (feedback loops)
Which programs should we accept?

I OK to reject (no solution).
rec x = x +. 1.0

I OK as an algebraic constraint (e.g., Simulink and Modelica).
rec x = 1.0 −. x

I But NOK if sequential code generation is targeted (algebraic loop).
I OK in constructive logic (Esterel)

rec z1 = if c then z2 else y
and z2 = if c then x else z1

I But it calls for an expensive boolean analysis.
Can we find a simple and uniform justification for a program mixing
continuous-time and discrete-time signals to be causaly correct?

22 / 43

A Non-standard Semantics for Hybrid Modelers
We proposed in [CDC 2010, JCSS 2012] to build the semantics on
Non-standard analysis.
der y = z init 4.0 and z = 10.0 − 0.1 ∗ y and k = y + 1.0

defines signals y , z and k, where for all t ∈ R+:

dy
dt (t) = z(t) y(0) = 4.0 z(t) = 10.0− 0.1 · y(t) k(t) = y(t) + 1

Consider the value that y would have if computed by an ideal solver taking
an infinitesimal step of duration ∂.
?y(n) stands for the values of y at instant n∂, with n ∈ ?N a non-standard
integer.

?y(0) = 4 ?z(n) = 10− 0.1 · ?y(n)
?y(n + 1) = ?y(n) + ?z(n) · ∂ ?k(n) = ?y(n) + 1

23 / 43

Non-standard time vs. Super-dense time
I Ed Lee & al. super-dense time modeling R× N

real time
t

(t, 1)

(t, 0)

(t, 2)

(v , 0)
(v , 1)

(v , 3)

(u, 0)

v
(v , 2)

u

24 / 43

Non-standard time vs. Super-dense time
I Ed Lee & al. super-dense time modeling R× N

real time
t

(t, 1)

(t, 0)

(t, 2)

(v , 0)
(v , 1)

(v , 3)

(u, 0)

v
(v , 2)

u

I Benveniste & al. non-standard time modeling T∂ = {n∂ | n ∈ ?N}

non-standard time

∂ ∂ ∂

24 / 43

ODEs with reset

Consider the sawtooth signal y : R+ 7→ R+ such that:

dy
dt (t) = 1 y(t) = 0 if t ∈ N

written (in Zélus):
der y = 1.0 init 0.0 reset up(y − 1.0) → 0.0

The ideal non-standard semantics is:

?y(0) = 0 ?y(n) = if ?z(n) then 0.0 else ?ly(n)
?ly(n) = ?y(n − 1) + ∂ ?c(n) = (?y(n)− 1) ≥ 0
?z(0) = false ?z(n) = ?c(n) ∧ ¬?c(n − 1)

This set of equation is not causal: ?y(n) depends on itself.

25 / 43

Accessing the “left limit” of a signal

There are two ways to break this cycle:
I consider that the effect of the zero-crossing is delayed by one cycle,

that is, the test is made on ?z(n − 1) instead of on z(n), or,
I distinguish the current value of ?y(n) from the value it would have

had were there no reset, namely ?ly(n).
Testing a zero-crossing of ly (instead of y),

?c(n) = (?ly(n)− 1) ≥ 0,

gives a program that is causal since ?y(n) no longer depends
instantaneously on itself.

der y = 1.0 init 0.0 reset up(last y − 1.0) → 0.0

26 / 43

Non standard semantics [JCSS’12]

Let ?R and ?N be the non-standard extensions of R and N.
Let the global time base or base clock be the infinite set of instants:

T∂ = {tn = n∂ | n ∈ ?N}

T∂ inherits its total order from ?N.
A signal is a partial function from T to a set of values.
The classical denotational semantics of synchronous languages can be
replayed in this setting.
The operator last

I In non standard semantics, last x is the previous value of x
I When x is left continuous, last x is the left-limit.

27 / 43

A type-based causality analysis [submission to HSCC 2014]
Associate a type that express input/output dependences. E.g.,

let node plus(x, y) = x + 0 → pre y

We get: f : ∀α1, α2.α1 × α2 → α1

I pre(x) is a, discrete-time only, unit delay.
I der x breaks a loop: der temp = c −. temp init 20.0 is correct.
I last(x) is the left limit of a signal:

I when x is a continuous-state variable (der x = . . .), this is the
Simulink state port.

I writting last x in a discrete context always make sense.

The following is rejected; the next is accepted.
rec der y’ = −. g init 0.0 reset up(−.y) → −0.9 ∗. y’
and der y = y’ init y0

rec der y’ = −. g init 0.0 reset up(−.y) → −0.9 ∗. last y’
and der y = y’ init y0

28 / 43

Compiler architecture
lexing/
parsing typing causality/

initialization
inlining automata

normalize
let/in

periods

discrete
zero-crossing

present/
signals

variable
completion

ODEs
zero-crossingslast/fby/→optimizationscheduling

code
generation

Built on an existing synchronous compiler
I Source-to-source and traceable transformations
I Resulting program is synchronous and translated to

sequential code

29 / 43

Comparison with existing tools

Simulink/Stateflow (Mathworks)

I Integrated treatment of automata vs two distinct languages
I More rigid separation of discrete and continuous behaviors

Modelica
I Do not handle DAEs
I Our proposal for automata has been integrated into version 3.3

Ptolemy (E.A. Lee et al., Berkeley)

I A unique computational model: synchronous
I Everything is compiled to sequential code (not interpreted)

30 / 43

Current work
Implementation/Optimization

I The current type system is very limited: if x and y are integers, x = y
is rejected in a hybrid node.

I Share states and zero-crossings, as much as possible. Simulink
doesn’t optimize this.

DAEs
I Only ODEs for the moment.
I DAEs raise several issues: no comprehensive theory for DAE Hybrid

Systems and index reduction with multiple modes
I No clue for the moment of how to treat modes in a scalable manner.
I A promising approach: integrate NonSmooth Dynamical Systems

techniques [Acary, Brogliato, ...] with complementary constraints and
Filippov differential inclusions.

31 / 43

Systèmes dynamiques non-réguliers
Système dynamique :

q̇ = A.q + r

Perturbation non-régulière r , solu-
tion d’un (par exemple) problème
de complémentarité linéaire (LCP)
: 

r = B.x
y = N.q +M.x

0 ≤ x ⊥ y ≥ 0

Bibliothèque numérique Siconos
[Acary]



N i = 0
Ku = 0

u− R i = 0
C u̇− i = 0

∀i 0 ≤ iDi ⊥ uDi ≥ 0

32 / 43

Systèmes dynamiques non-réguliers
Système dynamique :

q̇ = A.q + r

Perturbation non-régulière r , solu-
tion d’un (par exemple) problème
de complémentarité linéaire (LCP)
: 

r = B.x
y = N.q +M.x

0 ≤ x ⊥ y ≥ 0

Bibliothèque numérique Siconos
[Acary]



N i = 0
Ku = 0

u− R i = 0
C u̇− i = 0

∀i 0 ≤ iDi ⊥ uDi ≥ 0

32 / 43

Systèmes dynamiques non-réguliers

 2

 3

 4

 5

 6

 7

 8

 9

 10

V

u1
u2
u3
u4
u5
u6
u7
u8
u9

u10
u11
u12
u13
u14
u15
u16
u17
u18
u19
u20

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

V

s

v1
v2
v3
v4
v5
v6
v7
v8
v9

v10
v11
v12
v13
v14
v15
v16
v17
v18
v19
v20

33 / 43

Systèmes dynamiques non-réguliers
Des techniques similaires s’appliquent aux modes glissants [Acary 2010] :

Inclusion différentielle de Filippov :

ẋ = A.x + B.σ

Avec :

σ ∈ sgn(C .x)

Réduction à un Mixed-LCP, per-
mettant de moyenner σ sur un pas
d’intégration :

M.z + q = w − v
−1 ≤ z ≤ 1
(1+ z).w = 0
(1− z).v = 0
w , v ≥ 0

x

y

σ ∈ sgn(y)
⇐⇒

y ∈ N[−1,1](σ) =
{y |∀α ∈ [−1, 1], y(σ − α) ≥ 0}

34 / 43

V. Acary and B. Brogliato.
Numerical methods for nonsmooth dynamical systems.
Springer, 2008.

Albert Benveniste, Timothy Bourke, Benoit Caillaud, and Marc Pouzet.
A Hybrid Synchronous Language with Hierarchical Automata: Static Typing and Translation to Synchronous Code.
In ACM SIGPLAN/SIGBED Conference on Embedded Software (EMSOFT’11), Taipei, Taiwan, October 2011.

Albert Benveniste, Timothy Bourke, Benoit Caillaud, and Marc Pouzet.
Divide and recycle: types and compilation for a hybrid synchronous language.
In ACM SIGPLAN/SIGBED Conference on Languages, Compilers, Tools and Theory for Embedded Systems (LCTES’11),
Chicago, USA, April 2011.

Albert Benveniste, Timothy Bourke, Benoit Caillaud, and Marc Pouzet.
Non-Standard Semantics of Hybrid Systems Modelers.
Journal of Computer and System Sciences (JCSS), 78(3):877–910, May 2012.
Special issue in honor of Amir Pnueli.

Albert Benveniste, Benoit Caillaud, and Marc Pouzet.
The Fundamentals of Hybrid Systems Modelers.
In 49th IEEE International Conference on Decision and Control (CDC), Atlanta, Georgia, USA, December 15-17 2010.

Timothy Bourke and Marc Pouzet.
Zélus, a Synchronous Language with ODEs.
In International Conference on Hybrid Systems: Computation and Control (HSCC 2013), Philadelphia, USA, April 8–11
2013. ACM.

35 / 43

Non-Standard Analysis
A bit of history

I Born in 1961 from Abraham Robinson, then developed by a small
community of mathematicians.

I Proposed as a conservative enhancement of Zermelo-Fränkel set
theory; some fancy axioms and principles; nice for the adicts

I Subject of controversies: what does it do for you that you cannot do
using our brave analysis with ∀ε∃η . . . ?

I 1988: a nice presentation of the topic by T. Lindstrom, kind of
“non-standard analysis for the axiom-averse”

I 2006: used in Simon Bliudze PhD where he proposes the counterpart
of a “Turing machine” for hybrid systems (supervised by D. Krob)

Why is non-standard analysis interesting for the computer scientist?
I it offers a step-based view of continuous and hybrid systems
I it is non-effective; still, it is amenable to symbolic executions and can

thus be used for symbolic analyses at compile (and even run) time
36 / 43

Non-Standard Analysis
A bit of history

I Born in 1961 from Abraham Robinson, then developed by a small
community of mathematicians.

I Proposed as a conservative enhancement of Zermelo-Fränkel set
theory; some fancy axioms and principles; nice for the adicts

I Subject of controversies: what does it do for you that you cannot do
using our brave analysis with ∀ε∃η . . . ?

I 1988: a nice presentation of the topic by T. Lindstrom, kind of
“non-standard analysis for the axiom-averse”

I 2006: used in Simon Bliudze PhD where he proposes the counterpart
of a “Turing machine” for hybrid systems (supervised by D. Krob)

Why is non-standard analysis interesting for the computer scientist?
I it offers a step-based view of continuous and hybrid systems
I it is non-effective; still, it is amenable to symbolic executions and can

thus be used for symbolic analyses at compile (and even run) time
36 / 43

Non-Standard Analysis
The aim

I to augment R ∪ {±∞} with elements that are
infinitely close to x for each x ∈ R, call ?R the result;

I ?R should obey the same algebra as R: total order, +,×, . . .
any f : R 7→ R extends to ?f : ?R 7→ ?R, etc

Idea:
I mimic the construction of R from Q as Cauchy sequences; candidates

for infinitesimals include:

close to 0 :

{ 1√n

}
>

{1
n

}
>

{ 1
n2
}

> 0

close to +∞ :
{√n} <

{
n
}

<
{
n2
}

37 / 43

Non-Standard Analysis
The aim

I to augment R ∪ {±∞} with elements that are
infinitely close to x for each x ∈ R, call ?R the result;

I ?R should obey the same algebra as R: total order, +,×, . . .
any f : R 7→ R extends to ?f : ?R 7→ ?R, etc

Are we done? Not quite so:
I Sequences of reals

{
xn
}
generally do not converge

I Two sequences
{
xn
}
and

{
yn
}
converging to 0 may be s.t.

{n | xn > yn}, {n | xn < yn}, and {n | xn = yn} are all infinite sets

37 / 43

Non-Standard Analysis
The aim

I to augment R ∪ {±∞} with elements that are
infinitely close to x for each x ∈ R, call ?R the result;

I ?R should obey the same algebra as R: total order, +,×, . . .
any f : R 7→ R extends to ?f : ?R 7→ ?R, etc

Are we done? Not quite so:
I Sequences of reals

{
xn
}
generally do not converge

I Two sequences
{
xn
}
and

{
yn
}
converging to 0 may be s.t.

{n | xn > yn}, {n | xn < yn}, and {n | xn = yn} are all infinite sets
Partition subsets of N into neglectible/non-neglectible ones, so that:

I finite or empty subsets are all neglectible
I neglectible sets are stable under finite unions
I for any subset P, either P or its complement is non-neglectible

Having such a decision mechanism relies on Zorn Lemma (≈ axiom of
choice) and is formalized as explained next.

37 / 43

Non-Standard Analysis: the idea of Lindstrom

Pick F a free ultrafilter of N:
I ∅ 6∈ F , F stable by intersection
I P ∈ F and P ⊆ Q implies Q ∈ F
I either P or N− P belongs to F
I P finite implies P 6∈ F

Existence of F follows from Zorn’s lemma (⇔ axiom of choice)

Say that P is neglectible iff P 6∈ F

38 / 43

Non-Standard Analysis: the idea of Lindstrom

Pick F a free ultrafilter of N:
I ∅ 6∈ F , F stable by intersection
I P ∈ F and P ⊆ Q implies Q ∈ F
I either P or N− P belongs to F
I P finite implies P 6∈ F

Existence of F follows from Zorn’s lemma (⇔ axiom of choice)

Say that P is neglectible iff P 6∈ F

38 / 43

Non-Standard Analysis: the idea of Lindstrom
(xn), (x ′n) ∈ RN, define (xn) ≈ (x ′n) iff set {n | xn 6= x ′n} is neglectible

?R = RN/ ≈ ; elements of ?R are written [xn]

I For any two
(
xn
)
,
(
yn
)
exactly one among the sets

{n | xn > yn}, {n | xn < yn}, {n | xn = yn}, is non-neglectible
=⇒ any two sequences can always be compared modulo ≈

I By pointwise extension, a 1st-order formula is true over ?R iff it is true
over R: this is known as the transfer principle
Ex: defining +,−,× . . . by pointwise extension

I Say that

x = st([xn]) if xn → x modulo neglectible sets

39 / 43

Non-Standard Analysis: the idea of Lindstrom
Theorem: [standardisation]
Any finite non-standard real [xn] possesses a unique standard part

Proof:
1. Pick

x = sup{u ∈ R | [u] ≤ [xn]}

where [u] denotes the constant sequence equal to u.
2. Since [xn] is finite, x exists; remains to show that [xn]− x is

infinitesimal.
3. If this is not true,

I then there exists y ∈ R, y > 0 such that y < |x − [xn]|,
I that is, either x < [xn]− [y] or x > [xn] + [y],
I which both contradict the definition of x .

4. The uniqueness of x is clear, thus we can define st([xn]) = x .

(Infinite non-standard reals have no standard part in R.)
40 / 43

Integrals, ODE, and the Standardisation Principle
I internal functions and sets by pointwise extension:

∀n, gn : R 7→ R yields [gn] :
?R 7→ ?R by [gn]([xn]) = [gn(xn)]

I Pick ∂ infinitesimal and N ∈ ?N s.t. (N − 1)∂ < 1≤N∂, and consider
the set

T =
{
0, ∂, 2∂, . . . , (N − 1)∂, 1

}
By definition, if ∂ = [dn], then N = [Nn] with Nn =

1
dn

and T = [Tn]

with
Tn =

{
0, dn, 2dn, . . . , (Nn − 1)dn, 1

}
picturing T : T = [Tn]

I For f : [0, 1] 7→ R a continuous function and ?f = [f , f , . . .] :

st

 ∑
t∈Tn

1
Nn

f (tn)

=st

∑
t∈T

1
N

?f (t)

 =

∫ 1

0
f (t)dt

41 / 43

Integrals, ODE, and the Standardisation Principle
I internal functions and sets by pointwise extension:

∀n, gn : R 7→ R yields [gn] :
?R 7→ ?R by [gn]([xn]) = [gn(xn)]

I Pick ∂ infinitesimal and N ∈ ?N s.t. (N − 1)∂ < 1≤N∂, and consider
the set

T =
{
0, ∂, 2∂, . . . , (N − 1)∂, 1

}
By definition, if ∂ = [dn], then N = [Nn] with Nn =

1
dn

and T = [Tn]

with
Tn =

{
0, dn, 2dn, . . . , (Nn − 1)dn, 1

}
picturing T : T = [Tn]

I For f : [0, 1] 7→ R a continuous function and ?f = [f , f , . . .] :

st

 ∑
t∈Tn

1
Nn

f (tn)

=st

∑
t∈T

1
N

?f (t)

 =

∫ 1

0
f (t)dt

we claim that
41 / 43

Integrals, ODE, and the Standardisation Principle
Theorem: [standardisation] if f : [0, 1]→ R is continuous, then

st

 ∑
t∈Tn

1
Nn

f (tn)

=st

∑
t∈T

1
N

?f (t)

 =

∫ 1

0
f (t)dt

Proof: If f : R→ R is a standard function, we always have
∑
t∈T

1
N

?f (t) =

 ∑
t∈Tn

1
Nn

f (tn)

 (1)

Now, f continuous implies
∑

t∈Tn

1
Nn

f (tn)→
∫ 1

0
f (t)dt, so, by definition of

non-standard reals,∫ 1

0
f (t)dt = st

∑
t∈T

1
N

?f (t)

 (2)

I If f is smooth so that its Riemann integral is well defined, any
non-standard formulation of the integral of f has

∫ 1

0
f (t)dt as its

standard part
I The same philosophy applies to ODEs and Hybrid Systems

42 / 43

Integrals, ODE, and the Standardisation Principle
Theorem: [standardisation] if f : [0, 1]→ R is continuous, then

st

 ∑
t∈Tn

1
Nn

f (tn)

=st

∑
t∈T

1
N

?f (t)

 =

∫ 1

0
f (t)dt

Proof: If f : R→ R is a standard function, we always have
∑
t∈T

1
N

?f (t) =

 ∑
t∈Tn

1
Nn

f (tn)

 (1)

Now, f continuous implies
∑

t∈Tn

1
Nn

f (tn)→
∫ 1

0
f (t)dt, so, by definition of

non-standard reals,∫ 1

0
f (t)dt = st

∑
t∈T

1
N

?f (t)

 (2)

I If f is smooth so that its Riemann integral is well defined, any
non-standard formulation of the integral of f has

∫ 1

0
f (t)dt as its

standard part
I The same philosophy applies to ODEs and Hybrid Systems

42 / 43

Integrals, ODE, and the Standardisation Principle
Focus on ODEs. For every 0 < t ≤ 1:∫ t

0
f (u)du = st

 ∑
u∈T ,u≤t

1
N

?f (t)

 (Non-standard Riemann integral)

Set ∂ =
1
N and consider the ODE ẋ = f (x , t), x0, in integral form

x(t) = x0 +
∫ t

0
f (x(u), u)du (with the needed smoothness) (3)

x(t) = st
(
x0 +

∑
k : 0≤k∂≤t

1
N

?f (?x(k∂), k∂)
)

= st (?x(st)) , for st = max{tk | tk = k∂ ≤ t} (4)
where ?x is the non-standard semantics of the above ODE with time basis
∂: {

?x(tk) = ?x(tk−1) + ∂ × f (?x(tk−1), tk−1)
?x(t0) = x0

(5)

Theorem: [standardisation]
(5) is always defined as a non-standard dynamical system
(4) only holds if the ODE (3) has a solution

43 / 43

Integrals, ODE, and the Standardisation Principle
Focus on ODEs. For every 0 < t ≤ 1:∫ t

0
f (u)du = st

 ∑
u∈T ,u≤t

1
N

?f (t)

 (Non-standard Riemann integral)

Set ∂ =
1
N and consider the ODE ẋ = f (x , t), x0, in integral form

x(t) = x0 +
∫ t

0
f (x(u), u)du (with the needed smoothness) (3)

x(t) = st
(
x0 +

∑
k : 0≤k∂≤t

1
N

?f (?x(k∂), k∂)
)

= st (?x(st)) , for st = max{tk | tk = k∂ ≤ t} (4)
where ?x is the non-standard semantics of the above ODE with time basis
∂: {

?x(tk) = ?x(tk−1) + ∂ × f (?x(tk−1), tk−1)
?x(t0) = x0

(5)

Theorem: [standardisation]
(5) is always defined as a non-standard dynamical system
(4) only holds if the ODE (3) has a solution

43 / 43

Integrals, ODE, and the Standardisation Principle
Focus on ODEs. For every 0 < t ≤ 1:∫ t

0
f (u)du = st

 ∑
u∈T ,u≤t

1
N

?f (t)

 (Non-standard Riemann integral)

Set ∂ =
1
N and consider the ODE ẋ = f (x , t), x0, in integral form

x(t) = x0 +
∫ t

0
f (x(u), u)du (with the needed smoothness) (3)

x(t) = st
(
x0 +

∑
k : 0≤k∂≤t

1
N

?f (?x(k∂), k∂)
)

= st (?x(st)) , for st = max{tk | tk = k∂ ≤ t} (4)
where ?x is the non-standard semantics of the above ODE with time basis
∂: {

?x(tk) = ?x(tk−1) + ∂ × f (?x(tk−1), tk−1)
?x(t0) = x0

(5)

Theorem: [standardisation]
(5) is always defined as a non-standard dynamical system
(4) only holds if the ODE (3) has a solution

43 / 43

	Motivations
	Problèmes avec l'outillage disponible (EDO + discret)
	Key elements of our approach
	Typing
	Causality
	Compilation

	Nonsmooth Dynamical Systems
	Non-Standard Hybrid Systems (for the math-averse)
	Non-Standard Analysis and Standardisation (for the fan)
	Non-Standard Hybrid Systems and their Standardisation

